
Anisotropic Cosmological Models with Dark Energy

B. Saha
Laboratory of Information Technologies, JINR

1 Introduction
Recent observations suggest that the universe is spatially flat and undergoing a period of accelerated
expansion. In order to explain this accelerated mode of expansion of the present day Universe,
cosmologists introduced different kind source fields:

• Λ term: First introduced by Einstein in 1917. After the discovery of late time acceleration
it was resurrected.

• Quintessence: Most popular DE model with the equation of state w = pDE/εDE with
w ∈ [−1, −1/3].

• Chaplygin gas: To unify two completely different physical concept such as dark energy
(DE) and dark matter (DM), an exotic EoS was suggested pDE = A/εDE with A > 0.

• Phantom DE: In this case w < −1. Energy density increases as the Universe expands
and leads to an future singularity known as a big rip. The universe becomes infinitely large
within a finite time.

• Oscillating DE: This model was suggested to avoid eternal acceleration. Most popular is
the cyclic Universe which begins with a big bang and ends in a big crunch only to emerge
in a big bang again.

• Spinor fields: Introduction of nonlinear spinor field leads to the rapid expansion of the
universe. Recently it was shown that the spinor field can be viewed as an alternative to
DE.

• Models with interaction between DE and dark matter:
• Scalar-tensor DE models:
• Tachyon models:
• and many others

In this report in the framework of BI cosmological model we study the evolution of the
universe in presence of different time of source fields able to explain the late time acceleration.
2 BI Universe: a brief review
An anisotropic BI model is given by the metric

ds2 = dt2 − a2
1dx2

1 − a2
2dx2

2 − a2
3dx2

3, (1)

where ai are the functions of t only and the speed of light is taken to be unity. We also define

τ = a1a2a3. (2)

Einstein’s gravitational field equation corresponding to the BI spacetime we write in the form:
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äj

aj
+

ȧi
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Here T ν
µ is the energy-momentum tensor of the source fields (DE, spinor and scalar fields and

the perfect fluid etc.). In the models studied here we have T 1
1 = T 2

2 = T 3
3 . Under this from Eqns.

(3a) we find

ai(t) = Ai[τ(t)]1/3 exp
[
Xi

∫
[τ(t′)]−1dt′

]
, (4)
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with the integration constants Ai and Xi obeying the conditions A1A2A3 = 1 and X1+X2+X3 =
0.

As it was mentioned above, in order to give a more realistic description of the early day
Universe we need to consider the anisotropic cosmological models such as Bianchi type-I (BI).
Since the modern day Universe is wonderfully isotropic, we have to find out how and when the
initially anisotropic spacetime evolves into an isotropic one. There exists a number of isotropization
criteria in literature. Here are the most common two

A =
1
3

3∑
i=1

H2
i

H2
− 1, Σ2 =

1
2
AH2. (5)

Here A and Σ2 are the mean anisotropy parameter and shear parameter, respectively. Hi = ȧi/ai

are the directional Hubble parameters and H = ȧ/a is the mean Hubble parameter, with a(t) =
τ1/3 being the mean scale factor. Isotropization means that at large physical times, when the
volume scale τ tends to infinity, the three scale factors ai(t) grow at the same rate. Therefore,
we will say that a model is isotropizing if

ai/a → const > 0 as τ → ∞. (6)

From (4) follows ai/a → Ai = const. as τ → ∞. Recalling that the isotropic FRW model has
a1(t) = a2(t) = a3(t) = a(t) we assume that A1 = A2 = A3 = 1. Note that by re-scaling
some coordinates we can come to ai/a → 1 and the metric will become manifestly isotropic
at large t. Moreover, the isotropic nature of the present Universe leads to the fact that the
three other constants Xi should be close to zero as well, i.e., |Xi| << 1, (i = 1, 2, 3), so that
Xi

∫
[τ(t)]−1dt → 0 for t < ∞ (for τ(t) = tn with n > 1 the integral tends to zero as t → ∞ for

any Xi). The rapid growth of the Universe due to the introduction of the nonlinear spinor field
to the system results in the earlier isotropization.

We define the generalized deceleration parameter as

d =
d

dt

( 1
3H

) − 1 = −τ τ̈

τ̇2
. (7)

Thus we see that the volume scale plays special role in BI universe as most of the expressions
are either obtained or defined in terms of τ . So let us first write the equation for τ . Taking into
account that T 1

1 = T 2
2 = T 3

3 after a little manipulation from (3) one finds the equation for τ
which is indeed the acceleration equation and has the following general form:
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3
2
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)
. (8)

On the other hand from the Bianchi identity Gν
µ;ν = 0 we have

Ṫ 0
0 = − τ̇

τ

(
T 0

0 − T 1
1

)
. (9)

In order to resolve the Eqns. (8) and (9) we need one more condition, which is given by the
equations of state (EoS). It should be noted that the dark energy is supposed to interact with
itself only and it is minimally coupled to the gravitational field. As a result the evolution equation
for the energy density decouples from that of the perfect fluid, and from Eq. (9) we obtain two
balance equations: one for perfect fluid and the other for dark energy. In case of a spinor and/or
scalar field corresponding terms in (9) cancels each other thanks to the field equations leaving
the equation for perfect fluid only. In what follows we study the evolution of the BI universe
for some concrete type of source fields. It can be shown that for the cases considered here, the
right hand side of (8) is a function of τ , hence it allows first integral. Denoting RHS as F(τ) the
solution can be given as

τ̇ =
√

2[C − U(τ)], (10)

where E = − ∫ F(τ)dτ can be view as some potential and the integration constant C as energy
level.
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3 Universe as a binary mixture of perfect fluid and dark energy
In this section we study the evolution of the universe for the given type of dark energy in presence
of perfect fluid.
3.1 Models with Λ term
Let us consider a BI model with a Λ term in presence of a perfect fluid. As a perfect fluid we
choose an usual one obeying barotropic EoS or one with Van der Waals EoS. This case was
studied in details in [1].
3.1.1 Perfect fluid with barotropic EoS
Perfect fluid in this case obeys

ppf = ζ εpf , ζ ∈ [0, 1]. (11)

From (9) one now finds

εpf = ε0/τ
(1+ζ), ppf = ε0ζ/τ (1+ζ), ε0 = const. (12)

In the Figs. 1 we illustrated the potential in case of a negative Λ. As one sees in case of stiff matter
this potential allows only non-periodic solution. Evolution of τ corresponding to the negative Λ
is given in Figs. 2 and 3. As one sees, depending on the value of energy level (C) we have either
oscillatory or non-periodic mode of expansion. The oscillatory solutions are regular everywhere,
while the non-periodic ones ends in a big crunch (future singularity). In Fig. 4 we illustrated
the evolution of τ corresponding to the positive Λ. The anisotropy in this case dies away quicker
than it does when Λ = 0.

Fig. 1: View of the potential U(τ) Fig. 2: Evolution of volume scale τ with
a negative Λ and C = −0.1

Fig. 3: Evolution of volume scale τ with a
negative Λ and C = 0

Fig. 4: Evolution of the Universe with a
positive positive Λ

3.1.2 Perfect fluid with Van der Waals EoS

The pressure of the van der Waals fluid pw is related to its energy density εw by

pw =
8Wεw

3 − εw
− 3ε2

w. (13)
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This case was thoroughly studied in [1]. Here we present main results. In Figs. 5 and 6 energy
density and pressure of a Van der Waals fluid are illustrated for negative and nonnegative Λ,
respectively. In Fig. 7 the evolution of τ is illustrated. Independent to the sign of Λ the model
provides provides with rapidly expanding Universe. Fig. 8 demonstrates the acceleration of BI
universe filled with Van der Waals fluid for different Λ. As one sees (Fig. 6), Van der Waals fluid
possesses negative pressure at the initial time, hence can be exploited to explain inflation at the
early stage of evolution.

Fig. 5: View of energy density ε and
pressure p of a Van der Waals fluid with
a negative Λ

Fig. 6: View of energy density ε and
pressure p of a Van der Waals fluid with
Λ ≥ 0

Fig. 7: Evolution of τ with the BI Universe
filled with Van der Waals fluid

Fig. 8: Acceleration of a BI Universe filled
with a Van der Waals fluid for different Λ

3.2 Models with quintessence

Model with quintessence and chaplygin gas in BI unverse was studied in [2]. As it was mentioned
earlier quintessence is given by the EoS

pq = wqεq, (14)

where the constant wq varies between −1 and zero, i.e., wq ∈ [−1, 0]. The perfect fluid is given
by (11). It should be noted that wq = −1 corresponds to a Λ term, while wq < −1 corresponds
to a phantom DE. Energy density of perfect fluid is related to τ (12). In account of (14) one
finds

εq = ε0q/τ
(1+wq), pq = wqε0q/τ

(1+wq), (15)

with ε0q being some integration constant.
In Figs. 9 and 10 we illustrated the potential and evolution of τ in case of a quintessence (q),

phantom (ph), perfect fluid (pf) and Chaplygin gas (ch), respectively. As one sees, in case of a
phantom the model provides big rip (Universe becomes infinitely large within finite time).
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Fig. 9: View of potentials when the
Universe is filled with perfect fluid,
perfect fluid plus quintessence and perfect
fluid plus Chaplygin gas, respectively

Fig. 10: Evolution of the BI Universe
corresponding to the potentials
illustrated in Fig. 9

3.3 Case with Chaplygin gas

Let us now consider the case when the dark energy is represented by a Chaplygin gas. We have
already mentioned that the Chaplygin gas was suggested as an alternative model of dark energy
with some exotic equation of state, namely

pc = −A/εc, (16)

with A being a positive constant. In view of the Eq. (16) one now obtains

εc =
√

ε0c/τ2 + A, pc = −A/
√

ε0c/τ2 + A, (17)

with ε0c being some integration constant.
Proceeding analogously as in previous case for τ we now have

τ̈ =
3κ
2

((1 − ζ)ε0

τ ζ
+

√
ε0c + Aτ2 + A/

√
ε0c + Aτ2

)
. (18)

The corresponding solution in quadrature now has the forms:
∫

dτ√
C1 + 3κ

(
ε0τ (1−ζ) +

√
ε0cτ2 + Aτ4

) = t, (19)

where the second integration constant has been taken to be zero.

3.4 Case with modified quintessence

In order to get rid of the eternal acceleration different authors suggest different models. A
modified quintessence model able to give a regular mode of expansion was proposed in [3] with
the following EoS

pmq = −w(εmq − εcr), (20)

where the constant w ∈ [0, 1). Here εcr some critical energy density. Setting εcr = 0 one obtains
ordinary quintessence. It is well known that as the Universe expands the (dark) energy density
decreases. As a result, being a linear negative function of energy density, the corresponding
pressure begins to increase. In case of an ordinary quintessence the pressure is always negative,
but for a modified quintessence as soon as εq becomes less than the critical one, the pressure
becomes positive. In Fig. 11 evolution of energy density and pressure is demonstrated. In Fig. 12
we show the acceleration for different source fields. Here “rad”, “quint” and “quint-m” stand for
radiation, a mixture of radiation and an ordinary quintessence and a mixture of radiation and
modified quintessence, respectively.
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Fig. 11: View of energy density and
pressure when BI Universe experiences
oscillation

Fig. 12: View of the acceleration for
different source fields

4 Spinor field as an alternative to DE

In this section we study the role of spinor field in the evolution of a BI universe and examine
if a spinor field can be exploited to explain the early inflation and late time acceleration of
the Universe. This study was thoroughly carried out in [4, 5, 6]. We consider the case when
the spinor field nonlinearity is given by a self action (corresponds to the second term in energy
density and first term in pressure given in (21), respectively) or by an interaction with a scalar
field (corresponds to the third term in energy density and second term in pressure, respectively).
Here the nonlinearity is taken to be a power law of the invariants of the bilinear spinor form. For
energy density and pressure in account that of the perfect fluid we now have

T 0
0 =

m

τ
− λ

τ q
+

τ r−2

2(λ1 + τ r)
+

1
τ1+ζ

,

(21)

T 1
1 =

(q − 1)λ
τ q

− [(1 − r)λ1 + τ r]τ r−2

2(λ1 + τ r)2
− ζ

τ1+ζ
.

Taking into account that T 0
0 and T 1

1 are the functions of τ only, the Eq. (8) can now be
presented as

τ̈ = F(q1, τ), F(q1, τ) =
3κ
2

(
m +

λ(q − 2)
τ q−1

+
λ1rτ

r−1

2(λ1 + τ r)2
+

1 − ζ

τ ζ

)
, (22)

where q1 = {κ,m, λ, λ1, q, r, ζ} is the set of problem parameters. Corresponding potential in this
case reads:

U(q1, τ) = −3
2

[
κ
(
mτ − λ/τ q−2 − λ1/2(λ1 + τ r) + τ1−ζ

)]
. (23)

From (22) one finds τ̈ → (3/2)κm > 0 as τ → ∞, i.e., if τ̈ is considered to be the acceleration
of the BI Universe, then the massive spinor field essentially can be viewed as a source for ever
lasting acceleration. As far as initial stage of expansion is concerned (here we are exclusively
dealing with an expanding Universe), the positivity of the radical imposes some restriction on
the value of τ , namely in case of λ > 0 and q ≥ 2 the value of τ cannot be too close to zero at
any space-time point. In this case there exists an infinitely high potential wall as τ → 0 making
it impossible for any classical system to reach the point where τ = 0 (Fig. 13). Thus we conclude
that for some special choice of problem parameters the introduction of nonlinear spinor field
given by a self-action provides singularity-free solutions.

Let us now consider the case when λ is negative. From (23) one sees, in the vicinity of τ = 0
there exists a bottomless potential hole (Fig. 14). If the initial value of τ is too close to zero and
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the constant E is less than Umax (the maximum value of the potential in presence of a self-action),
the Universe will never come out of the hole.

In what follows, we present the results of numerical simulation graphically. In the figures
“1”,“2” and “3” correspond to the case with self-action plus interaction, self-action only and
interaction, respectively.

Fig. 13: View of the potential U(τ) for λ > 0 Fig. 14: View of the potential U(τ) for a
negative λ

In Figs. 15 and 16 we plot the corresponding energy density and pressure. In case of a positive
λ the energy density is initially negative while the pressure is positive. In this case though the
solution is singularity-free, the violation of dominant energy takes place. In case of a negative λ
the pressure is always negative.

Fig. 15: Energy density and pressure
corresponding to a positive λ

Fig. 16: Energy density and pressure in case
of a negative λ

As the figures show, in case of self-action with a positive λ pressure is initially positive, but
with the expansion of the Universe it becomes negative, whereas, in case of of a negative λ as well
as in case of interacting fields the pressure is always negative. Recall that the dark energy (e.g.
quintessence, Chaplygin gas), modelled to explain the late time acceleration of the Universe, has
the negative pressure. So we argue that the models with nonlinear spinor field and interacting
spinor and scalar fields to some extent can be considered as an alternative to dark energy which
is able to explain the late time acceleration of the Universe.
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In the Figs. 17 and 18 we illustrate the acceleration of the Universe for positive and negative
λ, respectively. As one sees, in both cases we have decreasing acceleration that tends to (3/2)κm
as τ → ∞. Depending of the choice of nonlinearity it undergoes an initial deceleration phase.
It is also seen that the nonlinear term plays proactive role at the initial stage while at the later
stage spinor mass is crucial for the accelerated mode of expansion. Given the fact that neutrino
possesses mass and there exists a huge amount of neutrino in nature, our result indicates at
neutrino as one of the possible candidates to explain late time acceleration of the Universe.

Fig. 17: Acceleration of the Universe
corresponding to a positive λ

Fig. 18: Acceleration of the Universe in case
of a negative λ
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